
A Prototype Distributed Visualization

System

Part II: ERIC (E�cient Reversible Image Compression)

Contents

1 Introduction 2

2 Compression Algorithm 2

2.1 Notation : 3

2.2 Forward IWT : 3

2.2.1 One-Dimensional Transform : 3

2.2.2 Two-Dimensional Transform : 4

2.2.3 Dropping High-Frequency Transform Coe�cients : : : : : : : : : : : 4

2.3 Successive Approximation of Integers : 4

2.4 Bit-Plane Encoding : 6

2.5 Entropy Coding : 7

2.5.1 Run-Length Encoding : 7

2.5.2 Hu�man Encoding : 7

2.6 Algorithm Parameters : 7

3 Decompression Algorithm 8

3.1 Entropy Decoding : 8

3.1.1 Hu�man Decoding : 8

3.1.2 Run-Length Decoding : 8

3.2 Bit-Plane Decoding : 8

3.3 Successive Approximation : 9

3.4 Inverse Integer Wavelet Transform : 9

3.4.1 One-Dimensional Transform : 9

3.4.2 Two-Dimensional Transform : 9

3.5 Algorithm Parameters : 10

4 Performance 10

4.1 Lossless Compression/Decompression : 10

4.1.1 Lossless Performance with No Progressive Encoding : : : : : : : : : : 10

4.1.2 Lossless Performance With Progressive Encoding : : : : : : : : : : : 11

4.2 Lossy Decompression : 12

4.2.1 Rate-Distortion Curves : 12

1

1 Introduction

This section describes a new lossless/lossy and progressive image compression/decompression

algorithm. This algorithm will be referred to as ERIC, which stands for \E�cient Reversible

Image Compression."

This algorithm losslessly compresses an image into multiple segments. Each segment

provides information about the image at a corresponding level of spatial resolution and

amplitude accuracy. Decompression of the �rst segment reconstructs the image at its lowest

accuracy level. Decompression of further segments of the compressed image reconstructs the

image at progressively better levels of accuracy. Decompression of all segments reconstructs

the original image exactly.

This algorithm is particularly useful in bandwidth-constrained storage/retrieval applica-

tions when the user requires the closest approximation to the original image, for a given

bandwidth constraint. Less accurate approximations take less bandwidth to transmit while

allowing the user to make a decision as to whether the full resolution is desired or not,

minimizing total transmission time per decision.

This algorithm is a progressively lossless compression/decompression algorithm and re-

quires no additional storage since all successive approximations of the image can be recon-

structed directly from the compressed image bit stream. Furthermore, the lossless compres-

sion ratio obtained with this algorithm is comparable to or better than the best standard

lossless compression algorithms, which do not allow for progressively accurate approxima-

tions. Finally, the wavelet transform used for decorrelating image pixels has a very fast

integer implementation, requiring only 5 additions and 2 shifts per image pixel.

Section 2 describes the compression algorithm, while Section 3 describes the decompres-

sion algorithm. Section 4 evaluates the performance of the algorithm described.

2 Compression Algorithm

At compression, a digital image is transformed by means of a new perfect reconstruction

(PR) integer wavelet transform (IWT) into two lower resolution images, a low-frequency

and a high-frequency image. It is an IWT in that it transforms integer input sequences into

integer output sequences of the same length, and it is PR in that the IWT is reversible;

i.e., the original image can be recovered exactly. This transform procedure is most often

\entropy-reducing" in that the entropy of the transform image is lower. The high-frequency

image is entropy coded, while the low-frequency image may either be entropy coded, or

further transformed by the IWT. Entropy coded segments, starting with the ones associated

with the lowest resolution levels, make up the compressed image.

The compression algorithm takes place in two steps:

� forward IWT: this step is entropy-reducing and decomposes the original image into

subimages containing information at various levels of spatial resolution; and

� entropy coding: the subimages are entropy coded separately.

2

2.1 Notation

Given that i is an integer and x a real number on the half-open intervals below, we de�ne

two operators: for rounding down (b: : :c), and for rounding up (d: : :e).

bxc = i, x 2 (i�
1

2
; i+

1

2
]

dxe = i, x 2 [i�
1

2
; i+

1

2
)

2.2 Forward IWT

Independent of the IWT and the image's dimensions, the procedure to compute the entropy-

reducing forward IWT is always the same. One level of a forward IWT decomposes an

image X into a low-frequency subimage X0 and a high-frequency subimage X1, both at

lower resolutions. The subimage X0 is a lower resolution version of image X and can be

used along with imageX1 to reconstruct the original imageX. This decomposition represents

one level of the forward IWT. After any level of decomposition, normalization of transform

coe�cients is necessary, as described later.

Typically, several levels of the forward IWT (a good default number is four) are computed,

by iterating the procedure just described to the low-frequency subimage produced by the

last decomposition. For example, the two-level forward IWT would be obtained by further

decomposing the low-frequency subimage X0 into subimages X00 and X01. Therefore, an

n-level forward IWT transforms an input image X into (n + 1) subimages, one of which

corresponds to the low-frequency subimage at the lowest level of spatial resolution, and n

high-frequency subimages at all levels of spatial resolution.

In the following paragraphs, we describe the computation of only one level of the forward

IWT, as it is computed for images.

2.2.1 One-Dimensional Transform

Given an integer input sequence (xi)i=0;:::;N�1, its forward IWT (yi)i=0;:::;N�1, will also be an

integer sequence, which will be computed depending on whether the length N of the integer

sequence is even or odd.

If the signal length N is even (i.e., N = 2K), then the integer transform sequence is

computed in the following two steps, odd coe�cients �rst(
y2i+1 = x2i+1 � b(x2i + x2i+2)=2c for i = 0; : : : ; K � 2

y2i+1 = x2i+1 � x2i for i = K � 1

and even coe�cients second(
y2i = x2i + by2i+1=2c for i = 0

y2i = x2i + b(y2i�1 + y2i+1)=4c for i = 1; : : : ; K � 1

If the signal length N is odd (i.e., N = 2K + 1), then the integer transform is computed

in the following two steps, odd coe�cients �rst

y2i+1 = x2i+1 � b(x2i + x2i+2)=2c for i = 0; : : : ; K � 1

3

and even coe�cients second8><
>:
y2i = x2i + by2i+1=2c for i = 0

y2i = x2i + b(y2i�1 + y2i+1)=4c for i = 1; : : : ; K � 1

y2i = x2i + by2i�1=2c for i = K

2.2.2 Two-Dimensional Transform

One level of a forward IWT for an image X can be computed in two steps:

� one one-level forward IWT in the horizontal dimension, producing two integer output

subimages,

� two one-level forward IWTs in the vertical dimension, producing four integer output

subimages.

The one-level forward IWT in the horizontal dimension produces one low-frequency subim-

age Y0 and one high-frequency subimage Y1. The one-level forward IWT in the vertical

dimension is applied to both subimages Y0 and Y1, and produces therefore four subimages:

one low-frequency subimage Y001 and three high-frequency subimages Y011, Y101, and Y111 .

The second level of the IWT would replace Y001 with Y002 , Y012 , Y102 , and Y112 (see Figure 1).

Additional levels of decomposition are always performed on the subimage of lowest-frequency

coe�cients.

2.2.3 Dropping High-Frequency Transform Coe�cients

A simpli�ed but non-reversible IWT can be computed, to reduce computation time; this is

done by dropping high-frequency transform coe�cients (i.e., using y2i+1 to compute y2i as

described above, and then setting y2i+1 to zero). This procedure corresponds to low-pass

�ltering and downsampling the image, thereby diminishing the image size by a factor of four.

One common use of this simpli�ed IWT is found when lossily compressing an image at a very

high compression ratio: at the �rst level, the simpli�ed IWT is used, followed by the usual

reversible IWT described above. The number of times the simpli�ed IWT is used is referred

to as nllow, while the subsequent number of regular levels of decomposition is referred to as

nllh.

2.3 Successive Approximation of Integers

We now describe the binary representation for the successive approximation of integers. In

the following discussion, the variable l signi�es the number of levels of approximation sought,

as de�ned in Section 2.6.

Given an integer x 2 [�(2n � 1); 2n � 1], it can uniquely be represented by its sign (if it

is nonzero) and the binary representation of its absolute value:

x = sign(x) � (
n�1X
i=0

bi2
i)

4

Table 1: Successive Approximation of Integers

x sign b1 b0
-3 -(1) 1 1

-2 -(1) 1 0

-1 -(1) 0 1

0 0 0

1 +(0) 0 1

2 +(0) 1 0

3 +(0) 1 1

Table 2: Binary Representation for Successive Approximation

x b1 b0
-3 11 1

-2 11 0

-1 0 11

0 0 0

1 0 10

2 10 0

3 10 1

with sign(x) = �1 for x 6= 0 and bi 2 f0; 1g. This amounts to an (n + 1){bit binary

representation for nonzero integers and an n�bit representation for x = 0 (see Table 1 for

n = 2).

Since we are interested in a binary representation which easily lends itself to a successive

approximation of integers, we de�ne the k�th level of approximation of integer x as

xk = sign(x) � (
k�1X
i=0

bi2
i):

Since xk may be equal to zero for some values of k while x may not, we attach the sign bit

(for nonzero values of x) to its most signi�cant bit bi (see Table 2).

More generally, for any signed integer x, it can always be represented in the following

way:

x = xl + sign(x� xl) � (
l�1X
i=0

bi2
i);

where xl = d x
2l�1

e and the k�th level of approximation of x is de�ned as

xk = xl + sign(xk � xl) � (
l�1X
i=k

bi2
i):

Note that the sign bit is only necessary for xk 6= xl.

5

2.4 Bit-Plane Encoding

Given an imageX and the result Y of its two-dimensional IWT, we decompose the transform

image Y into

1. a truncated transform image Z = (zi;j); and

2. l bit planes of information associated with l successive levels of approximation.

Due to di�erent normalization factors for the transform coe�cients in di�erent subimages,

a di�erent binary decomposition is required for each subimage, for l levels of approximation

sought. For example, consider just one level of decomposition of image X into the four

subimages Y001 , Y011 , Y101 , and Y111 . To achieve the �rst level of approximation of Y , one

must remove no bits from coe�cients in Y001 , 1 bit from coe�cients in Y011 and Y101 , and 2

bits from coe�cients in Y111 .

This procedure can be generalized to any subimage Y00i , Y01i , Y10i, or Y11i (where i refers

to the level of the IWT which produced the corresponding subimage). Let l be the number

of levels of approximation sought:

� for Y00i :

{ if i � l, then no bits should be removed

{ if i < l, then l � i bits should be removed

� for Y01i and Y10i:

{ if i � l, then no bits should be removed

{ if i < l, then l � i + 1 bits should be removed

� for Y11i :

{ if i � l, then no bits should be removed

{ if i < l, then l � i + 2 bits should be removed

Each bit plane taken from a subimage is assigned to the bit plane appropriate for a given

level of approximation, along with the sign bits. If N is the total number of pixels, then

the bit planes with a level of approximation i > 1 will contain about N bits (odd image

widths and heights lead to a slightly lower number) and an undetermined number of sign

bits. While at all approximation levels the number of sign bits is undetermined and very

much image-dependent, their total number is at most N (i.e., the total number of pixels of

transform image Y with nonzero values).

At each level of approximation, sign bits are encoded as they are, preceded by a header

indicating how many sign bits are following. All bits other than the sign bits number N at

each approximation level and are directly associated with pixels in the various subimages

produced by the two-dimensional IWT. For a given level of approximation, all bits are

grouped into 2 � 2 subblocks made of neighboring pixels in one of the subimages. When

2� 2 subblocks cannot be formed due to odd widths or lengths of a subimage, then either a

2�1, or 1�2, or 1�1 subblock is formed. The bits of each subblock are padded together to

form an integer varying between 0 and 15. Each bit plane is now made of a variable number

of sign bits and a sequence of integers ranging from 0 to 15.

6

2.5 Entropy Coding

The transform image Y is then entropy coded in decreasing levels of approximation. The

truncated image Z is entropy coded �rst. Then for each successive approximation level, the

sign bits are encoded as they are, preceded by their number, while the other N bits (grouped

into a sequence of integers ranging from 0 to 15) are entropy coded as well.

Any entropy-coding algorithm can be used here in both cases. In the following, we

describe a simple run-length/Hu�man encoding combination, which is a slight modi�cation of

an entropy coder designed by Eero P. Simoncelli and Edward H. Adelson at the Massachusetts

Institute of Technology [1]. We will refer to this modi�ed version as the EPIC entropy coder,

and we will use it to evaluate compression performance.

2.5.1 Run-Length Encoding

The \run-length encoding" stage is used to code long runs of zeros as separate symbols, by

uniquely decomposing the zero runs into a sequence of zero runs whose lengths are powers of

two (2i), using the run length's binary representation: a run of 9 zeros will be decomposed

into a run of 8 zeros (8 = 23) and a run of 1 zero (1 = 20). The run-length coded image now

contains additional symbols corresponding to run-lengths of 2i, for i = 1; : : : :

2.5.2 Hu�man Encoding

After run-length encoding the subsignal, a histogram is computed for the run-length coded

image, and a Hu�man code is designed for that histogram. The Hu�man code is encoded

�rst using an algorithm used in [1] which we do not describe, as it is not part of the new

technology we present here. Then the run-length encoded sequence is entropy coded with

the Hu�man code. Since all subsignals are encoded separately, each will require its own

Hu�man table to be encoded.

2.6 Algorithm Parameters

The following parameters can be selected by the user in the ERIC algorithm:

� nllow: the number of times the simpli�ed IWT is performed (obatined by dropping the

high-frequency coe�cients); it is recommended that 0 be chosen for low compression

ratios and 1 for high compression ratios.

� nllh: the number of times the regular reversible IWT is subsequently performed; it is

recommended that nllow + nllh � 4:

� l: In lossless and lossy modes, l is the logarithm base two of the quantization factor

(Q = 2l).

Thus, in lossless mode, l also signi�es the number of bit planes to be encoded bit-plane-

wise after quantization is applied. Bit-plane-wise endcoding provides the capability for

progressive approximation of that portion of the coe�cients remaining after quanti-

zation. Where Ncoeff represents the number of bits per coe�cient, the coarsest level

of approximation is then (Ncoeff � l), which is achieved by a right shift l times, or

7

(equivalently) by dividing each coe�cient by 2l. The dynamic range (number of bits)

of the quantized coe�cients|i.e., the coarsest level of approximation|must match the

dynamic range of the entropy coder (which is currently 16 bits).

� compression mode: \lossless" will encode all bit planes corresponding to successive

levels of approximation; \lossy" will simply quantize the transform image Y without

any bit-plane encoding.

Another important choice is that of the entropy coder. In this report, we illustrate results

based on an entropy coder designed by Eero P. Simoncelli and Edward H. Adelson of M.I.T.,

but it can be replaced by other entropy coding algorithms.

3 Decompression Algorithm

Given the relevant entropy-coded levels of approximation of the original image, they must

each be entropy-decoded. Bit-plane decoding then takes place for the planes corresponding to

the levels of approximation chosen. Then each integer transform coe�cient is approximated

according to the bits present in the bit planes and the sign bits.

Then the approximate integer transform image is inverse-transformed with the inverse

IWT, one spatial resolution level at a time. The result is an approximation of the origi-

nal image, the accuracy of which increases with the number of approximation levels being

transmitted. If all levels are transmitted, the image is reconstructed exactly.

3.1 Entropy Decoding

Entropy decoding is exactly the reverse of entropy coding described earlier, decomposed into

Hu�man decoding the encoded bit stream, and run-length decoding the decoded bit stream.

3.1.1 Hu�man Decoding

Hu�man decoding consists �rst of decoding the Hu�man table that was speci�cally designed

for the speci�c data segment, then using it to decode the encoded bit stream.

3.1.2 Run-Length Decoding

After Hu�man decoding, zero run-length symbols are replaced by their equivalent runs of

zeros, and the transformed data stream has been reconstructed exactly.

3.2 Bit-Plane Decoding

Bit-plane decoding is exactly the inverse process of the bit plane encoding process described

earlier: each entropy-decoded integer (whose range is between 0 and 15) is transformed into

a 2� 2 bit array (or 2� 1, 1� 2, or 1� 1 at the boundary of a subimage).

8

3.3 Successive Approximation

Each integer x is reconstructed at the target level of approximation k

xk = xl + sign(xk � xl) � (
l�1X
i=k

bi2
i);

as described earlier.

3.4 Inverse Integer Wavelet Transform

The inverse two-dimensional IWT is simply the inverse procedure from that applied when

computing the forward two-dimensional IWT. Each level of a two-dimensional inverse IWT

is made of three one-dimensional inverse IWTs, and so we present both one- and two-

dimensional IWTs.

3.4.1 One-Dimensional Transform

If the length N of transform signal Y is even (i.e., N = 2K), then the inverse integer

transform sequence X is computed in the following two steps, even coe�cients �rst(
x2i = y2i � by2i+1=2c for i = 0

x2i = y2i � b(y2i�1 + y2i+1)=4c for i = 1; : : : ; K � 1

and odd coe�cients second(
x2i+1 = y2i+1 + b(x2i + x2i+2)=2c for i = 0; : : : ; K � 2

x2i+1 = y2i+1 + x2i for i = K � 1

If the length N of transform signal Y is odd (i.e., N = 2K + 1), then the inverse integer

transform sequence X is computed in the following two steps, even coe�cients �rst

8><
>:
x2i = y2i � by2i+1=2c for i = 0

x2i = y2i � b(y2i�1 + y2i+1)=4c for i = 1; : : : ; K � 1

x2i = y2i � by2i�1=2c for i = K

and odd coe�cients second

x2i+1 = y2i+1 + b(x2i + x2i+2)=2c for i = 0; : : : ; K � 1

3.4.2 Two-Dimensional Transform

One level of a reverse IWT for images can be computed in two steps:

� two one-level inverse IWTs in the vertical dimension, producing two integer output

subimages;

� one one-level inverse IWT in the horizontal dimension, producing one integer output

image.

9

Further levels of the reverse IWT are again computed on the full subimage produced

at the previous level and the three high-frequency subimages at the current level. This

procedure is repeated as many times as required by the user but not more than the total

number of levels of decomposition performed at compression (which would exactly reproduce

the original image at full resolution).

3.5 Algorithm Parameters

The major parameter of the decompression algorithm is the approximation level (from 0 to b)

at which the user wishes to reconstruct the signal, or the number of bytes from the encoded

bit stream (equivalently, the compression ratio) the user wishes to use for reconstruction.

There are four decompression modes available with this algorithm:

1. \lossy with progressive spatial resolution": reconstruct the image using only the subim-

ages of quantized transform image Z corresponding to the required level of spatial

resolution;

2. \lossy": reconstruct the image using only the subimages of quantized transform image

Z corresponding to the full level of spatial resolution (no bit plane information is used);

3. \lossy with rate control": recontruct the image with the use of a �xed number of bits

from the compressed bit stream, including bits from the relevant bit planes; and

4. \lossy with quality control": reconstruct the image with the use of a limited number

of bit planes.

4 Performance

This section presents the performance of the ERIC algorithm, both in terms of compression

ratios achievable and in terms of compression/decompression timing. We compare ERIC

to other standard lossless compression algorithms. We did not include comparisons to the

CREW algorithm, which is also an algorithm based on an Integer Wavelet Transform, but

for which no code is available for comparison purposes.

4.1 Lossless Compression/Decompression

Two modes of lossless compression/decompression can be considered depending on the ap-

plication. The �rst consists of specifying zero levels of approximation (l = 0); the second,

using l = 8, which allows for progressive encoding.

4.1.1 Lossless Performance with No Progressive Encoding

First, we compare the performance of ERIC as a purely lossless image compression algorithm.

We compare it to that of two state-of-the-art algorithms: the RICE algorithm [4, 5], and the

lossless mode of the JPEG standard algorithm [6], which is based on DPCM (Di�erential

Pulse-Code Modulation) prediction.

10

Table 3: Lossless Compression Ratio Performance with No Progressive Encoding

Algorithm Lena Barb Comet Gaspra Lena2 Mars

ERIC 1.77 1.48 2.05 6.89 1.60 1.61

JPEG (DPCM) 1.81 1.41 1.89 4.16 1.66 1.61

RICE 1.60 1.37 1.91 5.03 1.50 1.59

Table 4: Lossless Compression/Decompression Timing Performance (in seconds) with No

Progressive Encoding

Algorithm Lena Barb Comet

ERIC 1.1/0.8 1.2/0.9 1.0/0.7

JPEG (DPCM) 3.2/2.2 3.3/2.3 3.2/2.1

RICE 2.5/3.3 2.7/3.5 2.3/3.3

Compression Ratio

In Table 3, the lossless compression ratios of six sample images are given: four 512� 512

images (Lena, Barbara, Comet, Gaspra) and two 256 � 256 images (Lena2, Mars). For

Barbara and Comet, ERIC achieves a compression ratio 5 to 7 percent higher than that

given by the better of the two algorithms; for Gaspra, the increase is 37 percent.

Timing

To illustrate the particularly low complexity of ERIC, in Table 4 we compare the lossless

compression and decompression times obtained for the current version of ERIC on a Sun

SPARCStation 10/41 for three of the sample images. The numbers given are the compression

time (CT) followed by the decompression time (DT): CT/DT in seconds. A quick analysis

of the results shows improvements in time by factors of 2 to 3 over the better of the JPEG

lossless and RICE algorithms.

Another interesting observation is that the decompression time of this algorithm is

roughly proportional to the number of reconstructed pixels at a given resolution level. This

is illustrated in Figure 2.

4.1.2 Lossless Performance With Progressive Encoding

Next, we compare the performance of ERIC as a purely lossless image compression algorithm,

using 5 levels of the IWT and 8 bit planes of approximation. We compare it to that of two

state-of-the-art algorithms: the RICE algorithm [4, 5], and the lossless mode of the JPEG

standard algorithm [6], which is based on DPCM prediction. It is important to note that

neither of these two algorithms has acceptable progressive transmission or lossy compression

capability.

Compression Ratio

11

Table 5: Lossless Compression Ratio Performance With Progressive Encoding

Algorithm Lena Barb Comet Gaspra Lena2 Mars

ERIC 1.76 1.55 2.00 6.52 1.65 1.57

JPEG (DPCM) 1.81 1.41 1.89 4.16 1.66 1.61

RICE 1.60 1.37 1.91 5.03 1.50 1.59

Table 6: Lossless Compression/Decompression Timing Performance (in seconds) With Pro-

gressive Encoding

Algorithm Lena Barb Comet

ERIC 1.8/2.0 1.9/2.1 1.8/2.0

JPEG (DPCM) 3.2/2.2 3.3/2.3 3.2/2.1

RICE 2.5/3.3 2.7/3.5 2.3/3.3

In Table 5, the lossless compression ratios of six sample images are given: four 512� 512

images (Lena, Barbara, Comet, Gaspra) and two 256 � 256 images (Lena2, Mars). For

Barbara and Comet, ERIC achieves a compression ratio 5 to 10 percent higher than that

given by the better of the two algorithms; for Gaspra, the increase is 30 percent.

Timing

To illustrate the low complexity of ERIC, in Table 6 we compare the lossless compression

and decompression times obtained for the current version of ERIC, using progressive encod-

ing, on a Sun SPARCStation 10/41 for three of the sample images. The numbers given are

the compression time (CT) followed by the decompression time (DT): CT/DT in seconds.

A quick analysis of the results shows timing performance comparable to that of the other

two lossless algorithms, thus con�rming the low complexity of ERIC.

4.2 Lossy Decompression

The lossy algorithm chosen for comparison purposes is the JPEG algorithm [6] developed

for the Imager for Mars Path�nder, as its performance was better than other public-domain

versions of JPEG. We will refer to this algorithm as the IMP-JPEG algorithm (version 3.3

is used for performance evaluation). Note that (unlike ERIC) the IMP-JPEG algorithm

does not have an integrated lossless mode; i.e., they use a separate algorithm for lossless

compression|the RICE algorithm.

4.2.1 Rate-Distortion Curves

The performance of lossy compression algorithms is most often expressed in operational rate-

distortion curves, which are obtained by varying the compression parameter|e.g., quality

factor, or target compression ratio. The two variables shown in these plots are the compres-

sion ratio (more conveniently displayed on a logarithmic scale) and the peak signal-to-noise

12

Transform Image Y
(1 level)

Image X

Y001 Y011

Y101 Y111

Y002 Y012
Y011

Y101 Y111

Y102 Y112

X

Transform Image Y
(2 levels)

Figure 1: Two-Dimensional Wavelet Transform.

14

0 1 2 3 4 5
1

2

3

4

5

6

7

8

spatial resolution level

de
co

m
pr

es
si

on
 ti

m
e

pe
r

pi
xe

l (
m

ic
ro

se
cs

)

Proportionality of decompression time and number of pixels

8bit lena

16bit test

Figure 2: The decompression time per pixel reconstructed at a given resolution level becomes

increasingly constant as the number of reconstructed pixels increases, depending on the

image. It can reach about 1.3 �s on a Sun SPARCStation 10/41 under Solaris.

15

20

25

30

35

40

45

50

2 4 8 16 32 64 128 256

P
S

N
R

 (
dB

)

Compression Ratio

LENA 512x512 8 Bits

ERIC
IMP JPEG

20

25

30

35

40

45

50

2 4 8 16 32 64 128 256

P
S

N
R

 (
dB

)

Compression Ratio

BARB 512x512 8 Bits

ERIC
IMP JPEG

25

30

35

40

45

50

2 4 8 16 32 64 128 256 512 1024

P
S

N
R

 (
dB

)

Compression Ratio

COMET 512x512 8 Bits

ERIC
IMP JPEG

25

30

35

40

45

50

55

60

8 16 32 64 128 256 512

P
S

N
R

 (
dB

)

Compression Ratio

GASPRA 512x512 8 Bits

ERIC
IMP JPEG

20

25

30

35

40

45

50

2 4 8 16 32 64 128

P
S

N
R

 (
dB

)

Compression Ratio

LENA 256x256 8 Bits

ERIC
IMP JPEG

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256 512

P
S

N
R

 (
dB

)

Compression Ratio

MARS 256x256 8 Bits

ERIC
IMP JPEG

Figure 3: Operational Rate-Distortion Curves for ERIC and IMP-JPEG Algorithms.

16

